Webinar: Afmystificering af Scope 3-emissioner

Torsdag den 17. juni 2021

Hello from PwC

Susanne Stormer

Partner, Head of Sustainability

Email: susanne.stormer@pwc.com

Mobile: +45 3079 4479

Jens Pultz Pedersen

Director, Sustainability Solutions

Email: jens.pultz.pedersen@pwc.com

Mobile: +45 2373 2222

Niels Strange Peulicke-Andersen

Head of ESG Accounting Ørsted

Email: nisan@orsted.com

Experience

Susanne recently joined PwC after 20 years with Novo Nordisk, setting direction for the company's ambition and strategy to be a sustainable business. She is a recognised international leader in corporate sustainability and reporting.

She is a member of the Project Task Force to operate the project on preparatory work for the elaboration of possible EU non-financial reporting standards, mandated to the European Financial Reporting Advisory Group (EFRAG) by the European Commission.

Experience

Jens has worked in PwC Denmark's sustainability team since 2000. Jens has worked with the majority of the largest Danish companies, providing advice on data quality for ESG data and assurance of sustainability reports.

He is currently part of the working groups to provide input for potential updates to the reporting requirements for ESG/CSR in the Danish Financial Statements Act as well as the working group under the 14th partnership on climate change transition.

Experience

Niels is head of ESG Accounting at Ørsted, and is responsible for Ørsted's ESG reporting in the Annual Report and in the ESG Performance Report.

Together with his team, Niels has developed Ørsted's reporting on climate change in accordance with the GHG Protocol and hereunder the setup for reporting on the Company's Scope 3 emissions.

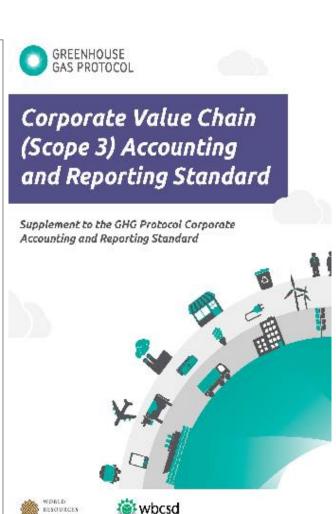
In this respect, Niels has come up with solutions to many of the reporting challenges companies face when reporting on the indirect CO2 emissions listed under scope 3 og the GHG Protocol.

Contents

Section: 1 Overview of Scope 3 emissions

Section: 2 Interview with Niels Strange Peulicke- Andersen, head of ESG Accounting at Ørsted

Section: 3 Q&A



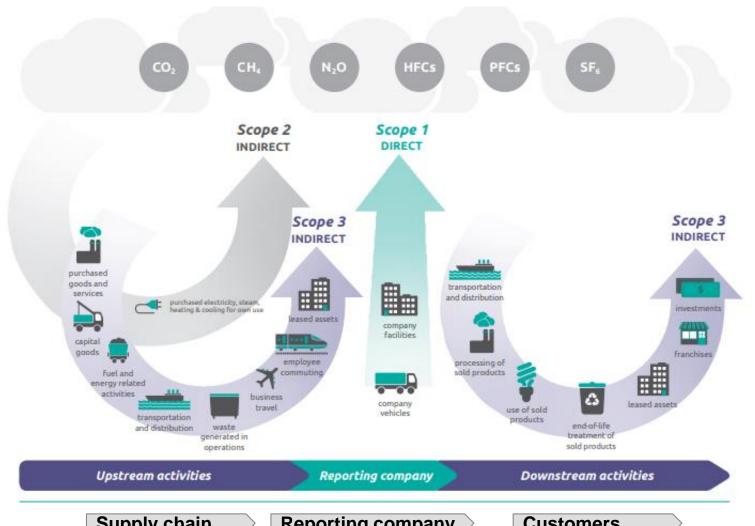
First things first

The Greenhouse Gas Protocol (GHG Protocol) establishes comprehensive global standardized frameworks to measure and manage greenhouse gas (GHG) emissions from private and public sector operations, value chains and mitigation actions.

Released in 2011, the GHG Protocol Corporate Value Chain (Scope 3) **Accounting and Reporting Standard** (also referred to as the Scope 3 Standard) is the only internationally accepted method for companies to account for these types of value chain emissions.

Scope 3 emissions are all of the emissions a company is responsible for outside of its own walls—from the goods it purchases to the disposal of the products it sells.

RESOURCES


While the reporting landscape is evolving, the Greenhouse Gas Protocol remains the fixed point for climate change reporting.

All reporting standards, frameworks and initiatives to harmonise ESG reporting have adopted the guidelines of the GHG Protocol.

Overview of GHG Protocol scopes and emissions across the value chain

Source: Corporate Value Chain (Scope 3) Accounting and Reporting Standard, Supplement to the GHG Protocol Corporate Accounting and Reporting Standard

A closer look at scope 3 categories

Upstream or downstream

Upstream scope 3 emissions

Downstream scope 3 emissions

Scope 3 category

- 1. Purchased goods and services
- Capital goods
- Fuel- and energy-related activities (not included in scope 1 or scope 2)
- 4. Upstream transportation and distribution
- Waste generated in operations
- 6. Business travel
- 7. Employee commuting
- 8. Upstream leased assets
- 9. Downstream transportation and distribution
- 10. Processing of sold products
- 11. Use of sold products
- 12. End-of-life treatment of sold products
- 13. Downstream leased assets
- 14. Franchises
- Investments

Key highlights:

- The 15 categories are intended to provide companies with a systematic framework to organize, understand, and report on the diversity of scope 3 activities within a corporate value chain.
- The categories are designed to be mutually exclusive, such that, for any one reporting company, there is no double counting of emissions between categories.
- Each scope 3 category is comprised of multiple scope 3 activities that individually result in emissions.
- Companies are still challenged with identifying Scope category (e.g.leased vs. rented car).

Corporate-level GHG Protocol reporting options

Reporting Option Report in conformance with the GHG Protocol Corporate Standard Report in conformance with the GHG Protocol Corporate Standard and the GHG Protocol Scope 3 Standard

Scope 2 Required Required Required

Optional: Companies may report any scope 3 emissions the company chooses Required: Companies shall report scope 3 emissions following the requirements of the Scope 3 Standard

Key highlights:

- Incorporating scope 1, scope 2, and scope 3 emissions enables companies to understand their full emissions impact across the value chain and focus efforts where they can have the greatest impact.
- Companies reporting their corporate GHG emissions have two reporting options:
 - Under the Corporate Standard, companies are required to report all scope 1 and scope 2 emissions, while reporting scope 3 emissions is optional.
 - The Scope 3 Standard is designed to create further consistency in scope 3 inventories through additional requirements and guidance for scope 3 accounting and reporting.
- Companies should make and apply decisions consistently across both standards.

Process to undertake reporting on Scope 3 emissions

Mapping of relevant emissions based upon the 15 categories and subcategories

Establishing approach and methodology for data collection, calculations, relevant estimates and assumptions

Define a materiality threshold (the Scope 3 Protocol suggests 5%)

Scope what categories of Scope 3 reporting are material for your company and activities

Define reporting criteria

Define a base year for possible target setting

Set ambitious targets and define projects on how to achieve them

Start reporting externally, consider if extra attention can be obtained from signing up to Science Based Targets or reporting to Carbon Disclosure Project (benchmarking)

Get assurance if required by stakeholders

Goals frequently cited by businesses as reasons for developing a scope 3 inventory

Business goal

Identify and understand risks and opportunities associated with value chain emissions

Identify GHG reduction opportunities, set reduction targets, and track performance

Engage value chain partners in GHG management

Enhance stakeholder information and corporate reputation through public reporting

Description

- · Identify GHG-related risks in the value chain
- Identify new market opportunities
- · Inform investment and procurement decisions
- · Identify GHG "hot spots" and prioritize reduction efforts across the value chain
- Set scope 3 GHG reduction targets
- · Quantify and report GHG performance over time
- Partner with suppliers, customers, and other companies in the value chain to achieve GHG reductions
- · Expand GHG accountability, transparency, and management in the supply chain
- Enable greater transparency on companies' efforts to engage suppliers
- Reduce energy use, costs, and risks in the supply chain and avoid future costs related to energy and emissions
- Reduce costs through improved supply chain efficiency and reduction of material, resource, and energy use
- Improve corporate reputation and accountability through public disclosure
- Meet needs of stakeholders (e.g., investors, customers, civil society, governments), enhance stakeholder reputation, and improve stakeholder relationships through public disclosure of GHG emissions, progress toward GHG targets, and demonstration of environmental stewardship
- Participate in government- and NGO-led GHG reporting and management programs to disclose GHG-related information

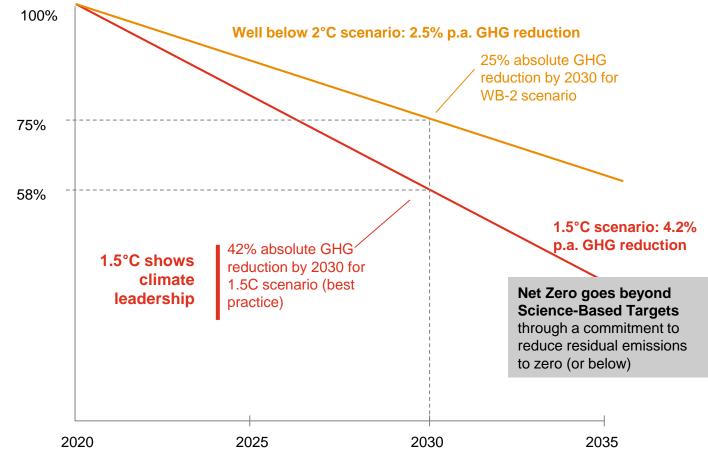
Key highlights:

- Scope 3 emissions can represent the largest source of emissions for companies and present the most significant opportunities to influence GHG reductions and achieve a variety of GHG-related business objectives.
- Before accounting for scope 3
 emissions, companies should
 consider which business goal or
 goals they intend to achieve.
- Setting goals to be approved by Science Based Targets

Source: Corporate Value Chain (Scope 3) Accounting and Reporting Standard, Supplement to the GHG Protocol Corporate Accounting and Reporting Standard

Credible climate action today is defined by Science-Based Targets

Science-Based Targets (SBTs) provide companies with a clearly defined pathway to future-proof growth by specifying how much and how quickly they need to reduce their greenhouse gas emissions.


The Paris Agreement in 2015 saw 195 of the world's governments commit to prevent dangerous climate change by limiting global warming to well below 2 degrees celsius. This signalled an acceleration in the transition to a low carbon economy.

Targets adopted by companies to reduce greenhouse gas (GHG) emissions are considered "science-based" if they are in line with what the latest climate science says is necessary to meet the goals of the Paris Agreement – to limit global warming to well-below 2°C above pre-industrial levels and pursue efforts to limit warming to 1.5°C.

Source: https://sciencebasedtargets.org/what-is-a-science-based-target/

The Science-Based Targets Initiative (SBTi) validates targets set using this approach to ensure credibility, and provides a detailed standard that companies can use to set a valid SBT.

GHG emissions (2020 baseline)

NB scenarios are strictly applicable to Scope 1+2 emissions - less ambitious targets can be applied to Scope 3 emissions, which must be included where >40% total emissions


What is required to set a SBT?

What is required to set a SBT?

- Level of ambition (Scope 1 and 2): At a minimum this must be consistent
 with the level of decarbonisation required to keep temperature increase
 to well-below 2°C while the SBTi encourages efforts towards 1.5°C
- Boundary: All company-wide Scope 1 and 2 GHG emissions (≥ 95%)
- Timeframe: 5-15 years into the future
- The use of offsets must not be counted as emissions reduction toward the progress of companies' SBTs
- Scope 3: A Scope 3 screening is required. An ambitious Scope 3 target is required when Scope 3 emissions cover > 40% of total emissions.
- Reporting: Disclose GHG emissions inventory on an annual basis.

What counts as an ambitious Scope 3 target?

- Absolute targets consistent with decarbonisation required to keep global temperature increase to 2°C
- Economic intensity targets that result in at least 7% year-on-year reduction of emissions per unit value added
- Physical intensity reductions aligned with the relevant sector reduction pathway

Carbon neutral targets to continue our decarbonisation in line with the 1.5°C limit

2025

Carbon neutral company

Emissions from

- Energy generation
- Operations

Science based targets

Obtained through at least:

98% reduction in carbon intensity

since 2006 (gCO2e/kWh) (scope 1-2) *

*Approved by the Science Based Targets initiative (SBTi) to be aligned with the 1.5°C pathway for energy companies

2040

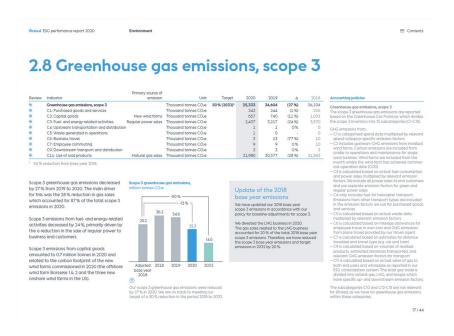
Carbon neutral footprint

All emissions, incl

- Supply chair
- Energy trading

As a milestone:

50% reduction in absolute emissions in 2032


compared to 2018 from our supply chain and energy trading (scope 3) *

Orsted

Scope 3 is reported in our ESG performance reports

2.8 Greenhouse gas emissions, scope 3

	Primary source of						
Review	Indicator emission	Unit	Target	2020	2019	Δ	2018
⊜	Greenhouse gas emissions, scope 3	Thousand tonnes CO2e	50% (2032)1	25,333	34,604	(27 %)	36,234
	C1: Purchased goods and services	Thousand tonnes CO2e		242	244	(1%)	226
	C2: Capital goods New wind farms	Thousand tonnes CO2e		657	740	(11%)	1,032
	C3: Fuel- and energy-related activities Regular power sales	Thousand tonnes CO2e		2,437	3,217	(24%)	3,570
	C4: Upstream transportation and distribution	Thousand tonnes CO2e		1	1	0%	0
⊚	C5: Waste generated in operations	Thousand tonnes CO2e		1	0	-	0
	C6: Business travel	Thousand tonnes CO2e		3	13	(77%)	10
	C7: Employee commuting	Thousand tonnes CO2e		9	9	0%	10
	C9: Downstream transport and distribution	Thousand tonnes CO2e		3	3	0%	3
0	C11: Use of sold products Natural gas sales	Thousand tonnes CO2e		21,980	30,377	(28 %)	31,383


1 50 % reduction from base year 2018.

Scope 3 greenhouse gas emissions decreased by 27 % from 2019 to 2020. The main driver for this was the 28 % reduction in gas sales which accounted for 87 % of the total scope 3 emissions in 2020.

Scope 3 emissions from fuel- and energy-related activities decreased by 24%, primarily driven by the a reduction in the sale of regular power to business end customers.

Scope 3 emissions from capital goods amounted to 0.7 million tonnes in 2020 and related to the carbon footprint of the new wind farms commissioned in 2020 (the offshore wind farm Borssele 1 & 2 and the three new onshore wind farms in the US).

Scope 3 greenhouse gas emissions, million tonnes CO2e

Our scope 3 greenhouse gas emissions were reduced by 27% in 2020. We are on track to meeting our target of a 50% reduction in the period 2018 to 2032.

Update of the 2018 base year emissions

We have updated our 2018 base year scope 3 emissions in accordance with our policy for baseline adjustments for scope 3.

We divested the LNG business in 2020. The gas sales related to the LNG business accounted for 20 % of the total 2018 base year scope 3 emissions. Therefore, we have reduced the scope 3 base year emissions and target emissions in 2032 by 20 %.

Accounting policies

Greenhouse gas emissions, scope 3

The scope 3 greenhouse gas emissions are reported based on the Greenhouse Gas Protocol which divides the scope 3 inventory into 15 subcategories (C1-C15).

GHG emissions from:

- C1 is categorised spend data mulitiplied by relevant spend-category-specific emission factors
- C2 Includes upstream GHG emissions from installed wind farms. Carbon emissions are included from cradle to operations and maintenance for single wind turbines. Wind farms are included from the month where the wind farm has achieved commercial operation date (COD)
- C3 Is calculated based on actual fuel consumption and power sales multiplied by relevant emission factors. We include all power sales to end customers and use separate emission factors for green and regular power sales
- C4 only includes fuel for helicopter transport.
 Emissions from other transport types are included in the emission factors we use for purchased goods and services
- C5 is calculated based on actual waste data multiplied by relevant emission factors
- C6 is calculated based on mileage allowances for employee travel in own cars and GHG emissions from plane travel provided by our travel agent
- C7 is calculated based on estimates for distance travelled and travel type (e.g. car and train)
- C9 is calculated based on volumes of residual products, estimated distances transported, and relevant GHG emission factors for transport
- C11 is calculated based on actual sales of gas to both end users and wholesale as reported in our ESG consolidation system. The total gas trade is divided into natural gas, LNG, and biogas which have specific up- and downstream emission factors.

The subcategories C10 and C12-C15 are not relevant for Ørsted, as we have no greenhouse gas emissions within these categories.

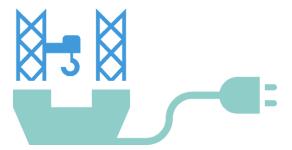
5.6 Calculation factors

Table reference	Indicator	Factor	Comment	Reference	Publication	
Table 2.7	Scope 1 emissions	Global warming potential of greenhouse gases	CO2, CH4, N2O, SF0	Intergovernmental Panel on Climate Change (IPCC), 2013	Fifth Assessment Report, The Physical Science Basis	
Table 2.7	Scope 1 emissions	Carbon emissions from fossil fuels at CHP plants	Coal, oll, natural gas	Danish Energy Agency, 2019	Standardfaktorer for brændværdler og COz-emissioner (Standard factors for calorific value and carbon emissions)	
Table 2.7	Scope 1 emissions	Carbon emissions from fossil fuels outside CHP plants	Diesel, petrol, fuel oil, jet fuel	American Petroleum Institute (API), 2009	Compendium of greenhouse gas emission methodologies for the oil and natural gas industry	
Table 2.7	Scope 2 emissions	Carbon emissions from power purchased	In Denmark	EnerginetDK, 2019	Generel deklaration og Miljødeklaration (Generic declaration and environmental declaration)	
Table 2.7	Scope 2 emissions	Carbon emissions from power purchased	In other European countries	Association of Issuing Bodies (AIB), 2019	European Residual Mixes	
Table 2.7	Scope 2 emissions	Carbon emissions from power purchased	In countries outside Europe	Institute for Global Environmental Strategies (IGES), 2019	List of grid emission factors	
Table 2.8	Scope 3 emissions	Use of sold products. Fuel- and energy- related activities	Emissions from end use of gas. Upstream supply chain of fuels	UK Department for Environment, Food & Rural Affairs (DEFRA), 2019	UK government GHG conversion factors for company reporting	
Table 2.8	Scope 3 emissions	Capital goods	Wind farm suppliers	Siemens, 2016 and 2017	Environmental Product Declaration, swt-6-0-154 and swt-7.0-154	
Table 2.8	Scope 3 emissions	Purchased goods and services	Supply chain emission factors depend on product categories	UK Department for Environment, Food & Rural Affairs (DEFRA), 2014	Indirect emissions from the supply chain	
Table 2.8	Scope 3 emissions	Business travel in private car	Assumption: 'average car', 'unknow fuel type'	UK Department for Environment, Food & Rural Affairs (DEFRA), 2019	UK government GHG conversion factors for company reporting	
Table 2.9	Avoided emissions	Carbon emissions from average fossil-fuel mix	Average of coal, gas, and oil	International Energy Agency (IEA), 2018	Emissions Factors & CO2 Emissions from Fuel Combustion	
Table 2.11	Water stress	Baseline water stress	Measured at site level, baseline water stress is the ratio of total water withdrawals to available renewable supply	World Resources Institute (WRI), 2019, Aqueduct Water Risk Atlas v3.0	Aqueduct Water Risk Atlas	
Table 3.5	People powered	Average power consumption of households per capita	For all countries, excluding the US	Enerdata, 2017	Global Energy & CO2 Data	
Table 3.5	People powered	Residential power consumption by state	For the US	US Energy Information Administration (EIA), 2018	Sales to ultimate customers by state	
Table 3.5	People powered	Numbers of residents and households by state	For the US	US Census Bureau, 2018	Annual Estimates of the Resident Population for the United States; Households ACS 5-year estimates	
Table 3.5	Jobs created	Average work-In-person-days per MW offshore wind	Includes only Jobs In offshore wind value chain	International Renewable Energy Agency (IRENA), 2018	Renewable energy benefits – leveraging local capacity for offshore wind	

Note: The table shows references for calculation factors used in the 2020 data set.

With suppliers, decarbonise the offshore wind supply chain

Disclose emissions and set sciencebased carbon-reduction targets



Use 100% renewable electricity in the manufacturing of wind turbines, foundations, cables, substations, and components

Optimise vessel fleet and develop roadmap to power vessels with renewable energy

Our vision
Let's create a world
that
runs entirely on
green energy

Q&A

Thank you for your time.

Susanne Stormer

Partner, Head of Sustainability

E: <u>susanne.stormer@pwc.com</u>

T: +45 3079 4479

Jens Pultz Pederser

Director, Sustainability Solutions

E: jens.pultz.pedersen@pwc.com

T: +45 2373 2222

www.pwc.dk

This publication has been prepared for general guidance on matters of interest only, and does not constitute professional advice. You should not act upon the information contained in this publication without obtaining specific professional advice. No representation or warranty (express or implied) is given as to the accuracy or completeness of the information contained in this publication, and, to the extent permitted by law, PricewaterhouseCoopers Statsautoriseret Revisionspartnerselskab, its members, employees and agents do not accept or assume any liability, responsibility or duty of care for any consequences of you or anyone else acting, or refraining to act, in reliance on the information contained in this publication or for any decision based on it.

© 2021 PricewaterhouseCoopers Statsautoriseret Revisionspartnerselskab. All rights reserved. In this document, "PwC" refers to PricewaterhouseCoopers Statsautoriseret Revisionspartnerselskab which is a member firm of PricewaterhouseCoopers International Limited, each member firm of which is a separate legal entity.